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ABSTRACT
Applications of large-scale knowledge graphs (KG) in the e-commerce

platforms can improve shopping experience for their customers.

While existing e-commerce KGs integrate a large volume of con-

cepts or product attributes, they fail to discover user intentions,

leaving the gap with how people think, behave, and interact with

surrounding world. In this work, we present COSMO, a scalable sys-

tem to mine user-centric commonsense knowledge from massive

behaviors and construct industry-scale knowledge graphs to em-

power diverse online services. In particular, we describe a pipeline

for collecting high-quality seed knowledge assertions that are dis-

tilled from large language models (LLMs) and further refined by

critic classifiers trained over human-in-the-loop annotated data.

Since those generations may not always align with human prefer-

ences and contain noises, we then describe how we adopt instruc-

tion tuning to finetune an efficient language model (COSMO-LM)

for faithful e-commerce commonsense knowledge generation at

scale. COSMO-LM effectively expands our knowledge graph to 18

major categories at Amazon, producing millions of high-quality

knowledge with only 30k annotated instructions. Finally COSMO

has been deployed in various Amazon search applications includ-

ing search relevance, session-based recommendation and search

navigation. Both offline and online A/B experiments demonstrate

our proposed system achieves significant improvement. Further-

more, these experiments highlight the immense potential of com-

monsense knowledge extracted from instruction-finetuned large

language models.

CCS CONCEPTS
• Large Language Model, Knowledge Base;

1 INTRODUCTION
Understanding users’ intentions behind massive noisy behaviors

in online e-commerce platforms can be beneficial for many down-

stream applications such as recommendations and product search,

etc [9, 16]. From the view of cognitive science, intentions are men-

tal states where humans can commit themselves to action, and

behaviors result from intentions [27]. For example, “to attend a

wedding party, we need to buy normal clothes” where the intention,
i.e., “attend a wedding party” is used to rationalize and explain

the user behavior i.e., “buy normal clothes”. In online shopping

∗
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Want shoes for
pregnant women

Bought a slip-
Resistant shoe

Intention (query)
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(Pregnant, require, slip-resistant)

Figure 1: An example of mining implicit commonsense
knowledge from e-commerce user behaviors.

scenarios, e-commerce platforms can be more intelligent and user-

friendly to provide explainable recommendations and personalized

search experiences if they can precisely capture users’ intentions.

However, such intentions are not explicitly expressed by human

beings, which requires commonsense to understand and thus makes

it challenging for machines to extract in a scalable way.

Recently Yu et al. [45] propose to leverage a significant amount of

knowledge implicitly stored in large language models like GPT3 [2]

or OPT [48] and generate user intentions by “asking” the reason

why users purchase or co-purchase products. One example is shown

in Figure 1 and e-commerce commonsense knowledge can be dis-

covered from user behaviors. Then human-in-the-loop annotations

are involved in collecting the judgments and providing human

feedback of automatic generations. Classifiers trained on small-

scale annotated data are used to filter low-quality knowledge. Such

distillation methods have been demonstrated effective in extract-

ing high-precision commonsense knowledge at lower annotation

cost [41, 45]. However, those methods generate knowledge candi-

dates from language models that are not well aligned with human

preferences. For example, we observe LLMs can generate generic in-

tentions that are neither faithful nor helpful, like “customers bought

them together because they like them” or “customers bought an
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Table 1: Comparison among existing commonsense knowledge graphs. ‘Rel’ represents relation types. Our new KG covers more
nodes and edges in more domains compared to existing e-commerce related KGs for intention understanding.

KG # Nodes # Edges # Rels Source Node Type E-commerce Intention User Behavior

ConceptNet [30] 8M 21M 36 Crowdsource
1

concept ✗ ✓ ✗

ATOMIC [25] 300K 870K 9 Crowdsource daily situation, event ✗ ✓ ✗

AliCoCo [13, 14] 163K 813K 91 Extraction concept ✓ ✗ search logs

AliCG [47] 5M 13.5M 1 Extraction concept, entity ✗ ✗ search logs

FolkScope [45] 1.2M 12M 19 LLM Generation product, intention 2 domains ✓ co-buy

COSMO (Ours) 6.3M 29M 15 LLM Generation product, query, intention 18 domains ✓ co-buy&search-buy

Apple watch because it is a type of watch”. The desired genera-

tion should be typical to explain e-commerce behaviors. Making

language models better follow users’ instructions becomes crucial

to improve the helpfulness [1, 18], truthfulness [15] and trans-

parency [26] of LLMs.

On the other hand, such distillation method still suffers from

major challenges caused by scalability issues of industry-level data.

First, [45] only explores co-purchasing intentions based on thou-

sands of co-purchase item pairs within two categories. In the real

production environment, millions of users produce complicated and

noisy behaviors every day, which also potentially entail enormous

and diverse intentions, such as search-buy behaviors. Thus, it is

crucial to select representative user behaviors for diverse inten-

tion generations. Second, [45] performs fine-grained annotation by

separately labeling plausibility and typicality scores. As we aim to

fully support more scenarios in e-commerce, the annotation cost is

significantly increasing with more categories and more user behav-

ior types. Third, when applying FolkScope to downstream tasks,

inference overhead might becomes the bottleneck since knowledge

generation for new user behaviors has to go through the pipeline

of LLM generation and classifier scoring. LLMs like OPT-30b used

in FolkScope require huge computation cost and are not feasible

for online serving.

In this work, motivated by recent advancements in instruction-

following languagemodels [4, 24, 38, 40], we directly align language

models with human feedback via instruction tuning for e-commerce

commonsense knowledge extraction. Instruction-finetuned lan-

guage models over a large collection of datasets have demonstrated

remarkable zero-shot abilities [40]. How to collect high-quality and

diverse instruction data becomes important and challenging. Start-

ing from the annotation data across two domains of co-purchasing
behavior in [45], we scale up the data collection in terms of in-

tention knowledge resources (i.e., user behaviors), product domains,
and relation types shown in Figure 4. For user behaviors, we also

adopt industry-scale query-item interactions to generate ambiguous

and evolving intentions. Different from straightforward intentions

behind co-purchasing behaviors [45], query intentions can help

reduce the semantic gaps between what a user truly needs and how

the product information is presented in the e-commerce system.

Generated intentions can help refine the broad query to specific

users’ needs and improve the query understanding abilities. In ad-

dition, we sample millions of two user behavior data among 18

popular domains (product categories) for knowledge candidate gen-
eration (§3.2). Before human labeling, we create a branch of heuris-

tic rules to filter out low-quality knowledge and design careful

sampling strategies for annotated data selection (§3.3). Following
Yu et al. [45], we collect two evaluation metrics named plausibility
and typicality as human feedback (§3.3.2). To fuse language models

with human judgments, we select typical knowledge examples as

the demonstrations of desired model outputs for the commonsense

generation task while annotated labels as the desired model outputs

for label prediction tasks such as typicality prediction etc. (§3.4).
The resulting LMs are capable of generating typical knowledge and

judging knowledge quality as well. Compared with vanilla LLMs,

our instruction-finetuned LM can significantly reduce inference

time and support extensive applications at scale. We successfully

deploy COSMO in various Amazon search applications and achieve

significant offline performance improvement and online revenue

increases.

The contributions of our work can be summarized as follows.

• We are the first industry-scale knowledge system that adopts

large language models to construct high-quality knowledge

graphs and serve online applications.

• We adopt instruction tuning for effective e-commerce com-

monsense knowledge generation to better align with human

preferences.

• We scale up e-commerce intention knowledge to millions

of user behaviors and achieve high-quality instruction data

generation with fewer annotation efforts.

• We apply generated intention knowledge to three real-world

e-commerce tasks, and promising experimental results show

great potential for more e-commerce scenarios.

2 RELATEDWORK
E-commerce Commonsense Knowledge. Existing e-commerce

knowledge graphs [5, 8, 13, 14, 46, 47] are mainly based on factual

knowledge concerning product attributes such as isA or authorOf
relations, and are not well connected with commonsense knowl-

edge about user intentions like “apple product fans” or “attend wed-

dings” etc. There is still a gap between collecting factual knowledge

about products and modeling users’ purchasing intention, which

we list the detailed comparison in Table 1. In contrast, Yu et al. [45]

proposed a framework named FolkScope to distill intention knowl-

edge from massive user behaviors by prompting large language

models. Instead of directly authoring knowledge assertions, human

beings only label a small number of automatic generations as high-

level supervision. Then classifiers trained on labeled data are used

to filter out low-quality generations. Although FolkScope achieves
high-precision extraction with low annotation cost, it covers lim-

ited domains and ignores abundant types of user interaction data
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Instruction: Explain the search-buy 
pair with the capableOf relation.
Input:
Query:  winter coat 
Product: Long Sleeve Puffer Coat
Output:  provide high-level warmth

Annotate
Instructions

Figure 2: Overall framework of generating high-quality in-
struction data from massive user behaviors and large lan-
guage models.

that entail complex intention knowledge in e-commerce scenarios.

To improve the generalization of e-commerce commonsense ex-

traction, we extend FolkScope, including scaling up to 18 popular

domains and introducing millions of search query behavior data.

Scaling up also presents challenges in terms of inference efficiency

when distilling knowledge from LLMs. We solve them by effective

finetuning.

Instruction-followed Language Models. Language models pre-

trained on web-scale corpus often generate unfaithful, biased, or

unhelpful contexts. This is because the training objective of most

vanilla LMs, i.e., predicting the next token, is not aligned with

human preferences. Recently a series of works demonstrate that

finetuning a language model with natural language instructions can

teach LMs to have desired model behaviors [18, 40]. Instruction-

finetuned LMs have substantially improved their zero-shot and

few-shot performance on unseen tasks [4, 24, 38]. The quality and

diversity of instruction data have large impacts on the instruction-

following abilities of LMs. As collecting human-written instructions

is time-consuming and costly,Wang et al. [37] proposed self-instruct
to iteratively generate instructions and their outputs from GPT3 [2]

based on a small seed set of tasks. Followupworks [3, 19, 32] directly

use machine-generated instruction-following data from ChatGPT

or GPT4 for LLM finetuning. However, they focus more on general-

purpose language models and instruction-finetuned LMs on specific

domains such as e-commerce remain unexplored. Our work aims

at efficient e-commerce instruction data collection and finetuning

LLMs to generate helpful and typical commonsense knowledge.

None of the above KGs are related to products or purchasing inten-

tion. We are the first to propose a effective KG construction pipeline

from LLMs and massive user intentional behaviors. Our pipeline

can be efficient for online serving of industry-scale applications.

3 PROPOSED FRAMEWORK
3.1 Preliminary
In this section, we present the formal definition for terms in Figure 2

and the overview of offline COSMO knowledge generation pipeline.

User Behaviors.Millions of users interact with online e-commerce

platforms every day and producemassive behavior logs. E-commerce

systems mine the intentions behind those behaviors to provide a

better online shopping experience. We choose two typical user be-

haviors with strong potential intentions, i.e., search-buy and co-buy.
Formally, we define the search-buy behavior as the query-product

pair (𝑞, 𝑝) that customers click the query 𝑞 and finally purchase the

product 𝑝 within short sessions. Similarly, we use the co-purchased

product pair (𝑝1, 𝑝2) to represent the co-buy behavior. Each product

𝑝 can be categorized into one major domain 𝑑 ∈ D (all domains

are shown in Table 3 and Figure 4).

Commonsense Knowledge. Following [45], we leverage relation-
aware prompts for LLMs to explain the user behavior ℎ as knowl-

edge candidates, which we represent the knowledge as the triple

(ℎ, 𝑟, 𝑡) where 𝑟 and 𝑡 represent relation and tail respectively. For

example, “customers bought camera case and screen protector glass

together because they are capable of providing protection for cam-

era”, “provide protection for camera” is the tail under the relation

capableOf.
Different from previous work [45] aligning commonsense re-

lations from ConceptNet [30] for thousands of data, we can not

simply adopt for millions of user behavior pairs due to computation

constraints. Hence we propose data-driven relation discovery from

large-scale generations to satisfy e-commerce scenarios. The basic

idea is to start from four seed relations (i.e., usedFor, capableOf,
isA, cause) that tend to generate diverse/high-quality knowledge

according to the previous work [45] and mine the frequent predi-

cate patterns to manually summarize the relations. The most com-

mon pattern is “the product is capable of being used [Prep]”, where

[Prep]means prepositions. Generationswith different prepositions

represent different tail types, which can be further canonicalized.

By doing so, we can also make generated knowledge structured. We

summarize our mined knowledge relation types and corresponding

tail types as well as examples in Table 2. Either relation type or

tail type is more e-commerce specific and strongly related to daily

scenarios, which might require commonsense.

Instruction Data.We denote {𝐼𝑡 } as a set of instructions, which
each defines a task 𝑡 in natural language. One example in Fig 2

can be “generate explanations for the search-buy behavior in the

domain 𝑑 using the capableOf relation”. Each task includes 𝑙𝑡 input-

output pair instances. For the commonsense generation task, the

input can be a user behavior pair (𝑝1, 𝑝2) or (𝑞, 𝑝), and the output is
the typical knowledge tail 𝑡 . Note the quality of knowledge (ℎ, 𝑟, 𝑡)
can be measured by plausibility and typicality scores labeled by

human annotators [20, 45]. For the sake of usability and helpfulness,

we select knowledge with high-typicality scores as desired model

outputs. To further improve the e-commerce aware abilities of

instruction-finetuned models, we also add several auxiliary tasks

and train a languagemodel for knowledge generalization and online

serving as well (more details in §3.4)

3.2 Knowledge Generation
In this section, we first describe how we efficient sample represen-

tative user behaviors as inputs of LLMs. Then we introduce the

question-answering based prompts to harvest large-scale knowl-

edge candidates from general LLMs.

3.2.1 User Behavior Sampling. Millions of users interact with on-

line e-commerce platforms everyday and produce massive behavior
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Table 2: Mined e-commerce commonsense relations for the
COSMO KG.

.

Relation Type Tail Type Example

used_for_func Function / Usage dry face

used_for_eve Event / Activity walk the dog

used_for_aud Audience daycare worker

capable_of Function / Usage hold snacks

used_to Function / Usage build a fence

used_as Concept / Product Type smart watch

is_a Concept / Product Type normal suit

used_on Time / Season / Event late winter

used_in_loc Location / Facility bedroom

used_in_body Body Part sensitive skin

used_with Complementary surface cover

used_by Audience cat owner

xIntersted_in Interest herbal medicine

xIs_a Audience pregnant women

xWant Activity play tennis

logs. E-commerce systems mine the intentions behind those behav-

iors to provide better online shopping experience.

In our work, we choose two typical user-behaviors with strong

potential intentions, i.e., search-buy and co-buy as described in

§ 3.1. Huge-volume behaviors contain noises or are non intentional

random ones. In order to generate diverse and high-quality knowl-

edge, we conduct fine-grained sampling, which starts from product

sampling followed by behavior pair sampling. For the product sam-

pling, we cover most common popular categories (also known as

browse nodes2) at Amazon and select top-tier products that have

relatively larger behavior interactions. Besides category labels, we

also adopt product type labels for sampling that define more than

a thousand classes and describe what the products essentially are,

such as umbrella, chair etc.
For the co-buy pair sampling, each co-buy edge should cover at

least one from the selected product set and we cross-check with

the product type of sampled pairs to remove random co-purchases

and avoid duplicated sampling from the abstract level. Also some

heuristic rules are applied such as the products co-purchased by

different types of products are likely to be randomly selected. For

the search-buy pair sampling, we empirically set thresholds for both

purchase rate and click rate to sample queries as well as purchased

products. One crucial consideration is the specificity of query, which
indicates whether the query is a broad or specific one. As our goal

is to make up the semantic gap between the search query and the

product, generating knowledge for the broad or ambiguous query

are of more values to narrow down clear needs. So we use one in-

house service from Amazon Search to compute the specificity score

of the query and sample broad queries associated with purchased

products. For most search queries with high engagement, search en-

gines can understand their intentions well. We also sample queries

with lower engagement and less purchase rate to directly probe

knowledge from LLMs themselves. To take all the above strategies

2
https://www.browsenodes.com/

into consideration, we finally sample several millions of behavior

pairs. The statistics of sampled behavior pairs are shown in Table 3

and there exist 1.40 million product type pairs among 3.14 million

co-purchased product pairs, which also demonstrates the diversity

of our sampling.

3.2.2 QA-Prompted Generation. LLMs have been shown to encode

a significant amount of knowledge in their parameters. Specific-

designed prompts can enable autoregressive LLMs to continue

generation on condition of verbalized prompts. For example, given

a purchase behavior “A customer bought an iPhone because it

has”, LLMs can generate the intention knowledge related to func-

tion or property of “iPhone”. In our work, we find that LLMs are

more skillful at answering contextualized questions given a well-

described scenarios or task instructions, which align with specific

user behaviors. So we verbalize the user behaviors by providing a

Question-Answering (QA) context. Take the following search-buy
prompt as example in Figure 3.

Task:  Please provide typical explanation for the following 

search-purchase behavior and complete the answer.

Search Query: {Query}

Product: {Product Title}

Question: what is the product capable of, which exactly 

match the intention of the search query? 

Answer:  the query means customers want the product that 

is capable of 

1.

Figure 3: Prompts used for generating knowledge candidates.

Adding the number character “1” at the end is a useful prompt

engineering trick to generate a list of knowledge candidates. we

first provide a task description like “The following search query

caused the following product purchases”, then follow the specific

query and product information. For general LLMs, we append one

question and partial answer so that LLMs can follow the given

instructions in convenience of parsing generation. In our work,

we use both OPT175b and OPT30b [48] hosted on 16 A100 GPUs to

conduct generation inference
3
. Some generation examples for each

domain are shown in Table 9 of the Appendix.

3.3 Knowledge Refinement
Though well-designed knowledge generation and relation-specific

parsing, vanilla LLMs can generate generic or unfaithful knowledge.

To encourage diversity and helpfulness, we use the following steps

to filter the generations.

3
We do not choose to query powerful ChatGPT or GPT4 APIs due to private data

access and privacy constraints.

https://www.browsenodes.com/
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Table 3: Statistics of COSMO knowledge graph including the sampled user behavior pairs, annotated knowledge candidates, and
remaining edges after knowledge refinement.

Co-buy Search-buy

Category # Behavior Pairs # Annotations # Edges # Behavior Pairs # Annotations # Edges

Clothing, Shoes & Jewelry 233,989 1303 2,147,605 176,018 597 887,130

Sports & Outdoors 251,713 1302 2,140,491 126,130 970 556,233

Home & Kitchen 426,070 1991 3,380,502 225,377 3798 1,054,764

Patio, Lawn & Garden 117,871 542 908,158 56,754 263 280,932

Tools & Home Improvement 258,480 1184 1,988,346 122,613 585 629,004

Musical Instruments 24,206 84 174,238 9,385 24 33,786

Industrial & Scientific 385,990 1820 3,002,352 177,400 1317 814,266

Automotive 166,234 782 1,330,580 55,201 456 258,340

Electronics 178,938 777 1,316,937 119,764 768 549,716

Baby Products 111,204 430 721,727 30,156 38 135,702

Arts, Crafts & Sewing 13,1131 616 1,095,531 62,135 232 274,015

Health & Household 233,945 1198 1,906,447 215,349 67 930,307

Toys & Games 148,455 646 1,165,692 73,512 536 291,107

Video Games 16,436 60 106,449 10,306 30 29,681

Grocery & Gourmet Food 99,660 504 775,016 116,765 2123 577,986

Office Products 136,519 650 1,086,735 79,470 2063 364,767

Pet Supplies 43,541 206 302,839 51,807 1122 219,143

Others 182,738 905 1,351,257 160,189 11 648,765

Total 3,147,120 15,000 24,900,902 1,868,331 15,000 5,093,795

3.3.1 Coarse-grained Filtering. In this step, we aim at filtering

incomplete generations with the help of linguistic analysis and

general knowledge that apply for any behavior.

Rule-based Filtering.We first use the sentence segmentation tool

from nltk to extract the first sentence from generation. Then we

calculate the perplexity score based on the GPT-2 language model

and tune the threshold to remove incomplete sentences. We also

directly filter the generations that are exactly the same as query,
product type or product title (or edit distance less than the threshold).
For the general knowledge like “used for the same reason”, or “used

with clothes”, we identity those cases by combining frequency and

entropy since they co-occur with many products or queries rather

than specific ones.

Similarity Filtering. To handle the semantic-similar cases that can

not easily be handled in the last step, we use the in-house language

model, which was pretrained on the e-commerce corpus including

query, product information etc, to obtain the embeddings for gener-

ate knowledge tails, query and product themselves. The similarity

between the knowledge embedding and the context embedding (the

original query or product embedding) is computed by their cosine

similarity:

𝑑 (𝑘, 𝑐) = cos(E(𝑘), E(𝑐)) . (1)

We find that filtered generations are essentially paraphrases of

original user behavior contexts with syntactic transformations. By

two coarse-grained filtering steps, we are able to remove quite

a large amount of noise and keep typical knowledge as much as

possible.

3.3.2 Human-in-the-loop Annotation. The annotation step aims at

providing human feedback for knowledge candidates and collecting

diverse instruction data. The biggest challenge is still the balance

between huge-volume knowledge candidates and cost. We expect

models trained over annotated data can generalize well among

multiple categories shown in Table 3. Uniform sampling might hurt

the prediction performance on long-tail knowledge. Instead we

combine the log of knowledge frequency and popularity of product

or query for re-weighting:

𝑤 (𝑞,𝑝 ),𝑡 =
log(𝑓 (𝑡))

pop(q) × pop(p) , (2)

where 𝑓 (𝑡) is the frequency of generated knowledge and the func-

tion of popularity is defined by the degree of query in the query-

product interaction graph or the degree of product in the product

co-buy graph. The more popular the product is, the more likely the

generated knowledge is common. For both two user behaviors, we

sample 15 thousand knowledge candidates for annotation and the

distribution is also shown in Table 3.

Due to data privacy issues, we employ professional data anno-

tation vendor company to conduct the high-quality annotation

followed by strict and careful internal auditing process. Previous

work [45] measures the quality of generated knowledge by two-step

annotation i.e., plausibility (how the knowledge is plausible) and

typicality (how representative the knowledge is regarding the typi-

cal shopping behavior). One example is that more typical intention

why customers bought apple watches is that they are intelligent

watches instead of being used for telling the time. To reduce the

cognitive burden of annotators and the potential disagreement rate

of commonsense, we decompose the two measurements’ judgments

into five clear questions: 1). Is the explanation a complete sentence?
2). Is the explanation relevant? 3). Is the explanation informative? 4).
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Domains

Clothing, Shoes & Jewelry
Sports & Outdoors
Home & Kitchen
Patio, Lawn & Garden 
Tools & Home Improvement
Musical Instruments
Industrial & Scientific
Automotive
Electronics
Baby Products
Arts, Crafts & Sewing 
Health & Household
Toys & Games
Video Games
Grocery & Gourmet Food
Office Products 
Pet Supplies 
Others

Relations

Used_For_Func
Used_For_Event
Used_For_Audience
Capable_Of
Used_As
Is_A
Used_On
Used_In_Location
Used_In_Body …

Tasks
Commonsense Generation

Plausibility Prediction
Typicality Prediction

Search Relevance Prediction
Co-purchase Prediction

User Behaviors

item-item co-purchase query-item search-buy

E-commerce Commonsense Extraction 

18 Domains

15 Relations

5 Tasks

Figure 4: Illustration of finetuning COSMO-LM to generate
e-commonsense knowledge from two typical user behaviors.
We scale up product domains, relation types and tasks.

Is the explanation plausible? 5). Is the explanation typical?, where
each question is labeled as yes/no/not sure by two different an-

notators and finally checked by a third person if disagreement is

found
4
. Pilot study over 2000 example annotation shows that the

pipeline significantly reduced disagreement rate. For the quality

of annotated data, we randomly sample 5% annotation for inter-

nal auditing and the accuracy can reach more than 90%. We then

build a classification model using this data to score all the knowl-

edge candidates after coarse-grained filtering. We fine-tuned both

DeBERTa-large [6] and our in-house language model to populate

the human judgements to the whole knowledge candidates whose

plausibility score is above 0.5 are left. After the process of knowl-

edge refinement, we obtain high-quality e-commerce knowledge

with relatively low cost and the statistics are also shown in Table 3.

3.4 Instruction-tuned COSMO Language Model
After collecting human judgments on 30k diverse knowledge sam-

ples, we can create large-scale instruction data based on annotated

data. The annotation results are shown in Table 4. We can observe

that more than one-third search-buy generations are typical and can
directly serve as instruction data. But the typical ratio for co-buy
is notably low since LLMs mostly generate intention knowledge

for one of the co-purchased products rather than considering their

common reasons, making generations implausible. We expect fine-

tuned language models to have desired model behaviors. Apart

from generating typical knowledge, we enable LMs to have abilities

4
The instructions of each question are detailed in Appendix B and the screenshot of

annotation interfaces is shown in Figure 11.

Table 4: The plausibility and typicality ratios of annotated
data for two user behaviors.

Plausibility Typicality

Search-buy 44.3% 35.0%

Co-buy 14.5% 9.0%

Figure 5: Illustration of COSMO-LM deployment, featuring
the Asynchronous Cache Store and Feature Store as central
components. It depicts the efficient processing of user queries
and dynamic daily updates, crucial for meeting Amazon’s
search latency requirements.

of plausibility and typicality prediction, in which all the annotations

are converted to instruction data for the tasks.

Considering non-negligible noises of user-behavior data, our

fine-grained annotations in §3.3.2 have identified irrelevance query-
product pairs or random cobuy pairs. We also consider adding co-
purchase prediction and search-relevance prediction into the fine-

tuned tasks. So far, we collect instruction data covering 18 product

domains, 15 relation types, and 5 different types of tasks. To make

the model robust to different formats, we design different templates

to verbalize the instructions and input-output pairs. For example,

we add prefixes of “search query”, “user input” or “user searched:”

etc. We finetune the LLaMA 7b and 13bmodels [33, 34], the widely-

used open foundation models with our collected instruction data.

3.5 Online Deployment
The deployment centers around an efficient feature store and asyn-

chronous cache store, ensuring streamlined processing and cost-

effective management of customer queries and model responses.

3.5.1 Deployment Strategy. Deployment Management: Sage-
Maker [11]

5
is used to refresh COSMO-LM model, facilitating dy-

namic ingestion of customer behavior session logs and efficient

model updates through robust automation. Feature Store Inte-
gration: This store is essential for transferring model responses to

structured features, making them actionable for downstream appli-

cations. It handles features like product key-value pairs, semantic

subcategory representations, and strong intent detection. Asyn-
chronous Cache Store: Employed to manage frequent searches

5
Amazon machine learning model services https://aws.amazon.com/pm/sagemaker/

https://aws.amazon.com/pm/sagemaker/
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and adapt to daily traffic patterns, this store efficiently captures

user queries through a two-layered caching strategy, combining

pre-loaded yearly frequent searches and batch-processed daily re-

quests.

3.5.2 Operational Flow. We list key processes showed in Figure 5:

• Model Deployment: COSMO-LM is deployed on SageMaker

for processing user behavior session logs and dynamic model

updates.

• Request Handling: Initial query checks against the Asynchro-

nous Cache Store quickly retrieve responses for frequent queries

or forward others for batch processing.

• Batch Processing and Cache Update: The Feature Store for-
mats languagemodel responses into structured insights, updating

the cache for future queries.

• Communication with DownstreamApplications: Structured
data from the cache enhances various downstream applications,

providing enriched features for improved user interaction.

• Feedback Loop: Continuous model refinement is achieved by

feeding back user interactions into COSMO-LM, ensuring up-to-

date responsiveness to evolving user behaviors.

3.5.3 Impact and Limitations. The deployment of COSMO-LM,

utilizing the Asynchronous Cache Store and Feature Store strategy,

effectively meets Amazon’s restricted search latency requirements

while maintaining storage costs comparable to real-time serving

for the majority of traffic. This approach significantly enhances

our ability to manage online requests swiftly and economically.

To acknowledge, even though we refresh our model daily, we are

limited in processing real-time information, such as flash sales.

These time-sensitive events, often fluctuating within a short span,

pose a challenge to our current system’s ability to rapidly assimilate

and reflect such immediate changes. This limitation underscores

the need for further development to enhance our system’s agility

in responding to the fast-paced dynamics of e-commerce activities.

4 EVALUATIONS AND APPLICATIONS
In this section, we adopt instruction-tuned COSMO language mod-

els to generate e-commerce commonsense knowledge for down-

stream applications, i.e., search relevance, session-based recom-

mendation and search navigation. We conduct extensive offline and

online evaluation experiments to demonstrate the effectiveness of

our proposed framework and deployed system.

4.1 Search Relevance
Determining relevance scores between the search query and docu-

ments lies the core of information retrieval, which serves as cru-

cial components for search engines [29]. A major challenge in

e-commerce product search is the semantic gap between queries

and product catalogs [10, 17]. Some of them require abundant com-

monsense knowledge to bridge them together. For example, the

query “winter clothes” often implicates the users want clothes to

keep warm. Hence we augment search relevance prediction with

COSMO knowledge explaining search-buy behaviors.

Query Encoder Product Encoder Encoder

𝑞! 𝑞!

(a) Bi-encoder (b) Cross-encoder

𝑞" ⋯ 𝑞! 𝑞!𝑞" ⋯𝑝! 𝑝"𝑝" ⋯ 𝑝! 𝑝"𝑝" ⋯ 𝐼! 𝐼#𝐼" ⋯

⋯ ⋯ ⋯

Aggregator Aggregator Aggregator

Softmax classifier Softmax classifier

Figure 6: Illustration of Search Relevance Models.

Table 5: Statistics of ESCI evaluation datasets of different
locales (markets).

KDD Cup us ca uk in

# Training Pairs 1,393,063 1,148,528 220,114 462,560 1,480,116

# Test Pairs 425,762 383,695 72,500 155,138 495,078

# Exact Pairs 1,247,558 1,104,417 245,796 455,947 1,352,128

# Unique Queries 97,345 57,971 9,537 32,162 42,884

# Unique Products 1,215,851 803,363 136,398 427,572 456,407

Formally, given a query 𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} and a list of re-

trieved products 𝐷 where 𝑃 ∈ 𝐷 , either ranking or classifica-

tion tasks require the relevance score of each query-product pair

{𝑄, 𝑃} [21]. In real e-commerce systems, each product is accom-

panied by side information, e.g., product title, descriptions and

attributes. To be simple, we concatenate them into one single text

span 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑚}. As aforementioned that there remains

semantic gaps between user intentions in the query 𝑄 and product

information 𝑃 , we leverage COSMO-LM to generate commonsense

knowledge 𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑙 } behind the query-product pairs and

explicitly enhance their connections.

4.1.1 Experiment Setup. We adopt open-released Amazon shop-

ping query datasets
6
from KDD Cup 2022. Following the settings of

Task 2, the problem of measuring search relevance is formulated as

a four-class classification problem: to distinguish a given product

as an Exact, Substitute, Complement, or Irrelevant match for a user’s

query. In order to verify the generalization of our approach, we also

collect similar datasets from our online system to accommodate

product varieties and languages habits across different markets,

i.e., United States (us), Canada (ca), United Kingdom (uk), and In-

dia (in). Dataset statistics are reported in Table 5. Considering the

class imbalance distribution, we report Macro F1 and Micro F1 but

focus more on the former one.

4.1.2 Baselines. We consider two representative architectures as

baselines shown in Figure 6:

• Bi-encoder [22, 28], also known as two-tower models, takes

the concatenation of the query representation and product title

representation as the input of a multi-layer perceptron to predict

the relevance label.

• Cross-encoder [42] feeds all relevant features (e.g., query, prod-
uct title, description, etc) into the unified encoder and leverage

joint representations to make predictions.

6
https://github.com/amazon-science/esci-data

https://github.com/amazon-science/esci-data
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Table 6: Experimental Result of Public ESCI English subset.

.

Method

Fixed Encoder Trainable Encoder

Macro F1 Micro F1 Macro F1 Micro F1

Bi-encoder 25.52 65.49 47.96 70.23

Cross-encoder [42] 28.44 66.84 57.49 74.23

Cross-encoder w/ Intent 45.52 86.40 73.48 90.78
Δ 60.06% 29.26% 27.81% 22.30%

Cross-encoder models generally outperform bi-encoder counter-

parts due to extra attention interactions. Hence we augment cross-

encoder models with our generated knowledge features, i.e., con-

catenate [𝑄, 𝑃,𝐺] as inputs. We follow [42] to use strong deberta-v3-
large7 as the base model and consider both fixed and tuned settings

for encoders.

4.1.3 Public Dataset Results. Table 6 shows that knowledge gen-
erated from COSMO-LM, which captures implicit e-commerce

commonsense, can significantly boost the performance of query-

product semantic relevance. When the encoder is fixed, there is

no huge difference between two architectures. But augmented in-

tention knowledge boosts the performance around 60% on Marco

F1 and 30% on Micro F1. We can still observe the performance

enhancement around 25% when the parameters of encoders are

updated. Finally, generated knowledge helps Cross-encoder achieve

73.48% Macro F1 and 90.78% Micro F1, which even surpasses the

top-1 ensemble model of KDD Cup leaderboard [42].

4.1.4 Private Dataset Results. To further validate the effectiveness

of our approach on multi-locale scenarios, we conduct similar ex-

periments on a large-scale private dataset. The product distribution

and query language habits might have significant differences across

different locales (markets). We expect our generated knowledge

can provide high-quality features or signals for search relevance

systems, and generalize to more complex scenarios. From Figure 7a

and Figure 7b, we can conclude the following observations: 1).

Our COSMO-LM can always help strengthen cross-encoder perfor-

mance even with limited annotations, which is in line with results

of the public dataset in §4.1.3. 2). Intention-enhanced cross-encoder
models can significantly outperform baseline methods for all locales

whenever the encoder is fixed or tuned. In the online deployment

environment, generated knowledge as well as other features stored

in the feature store are integrated to make final predictions shown

in Figure 5. In order to improve serving efficiency, we pre-cache

features for frequent search queries.

4.2 Session-based Recommendation
Recommendation systems have become one of most crucial com-

ponents in the e-commerce platform for customers to choose from

massive and rapidly increasing products. Sessions associated with

multiple user-item interactions in a period of time can better cap-

ture user preferences and intents besides user profiles [36]. Session-

based recommendations typically predict next click or purchased

7
https://huggingface.co/microsoft/deberta-v3-large
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Figure 7: Comparison results on private ESCI datasets of four
different locales.

item from the product item set 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚} given an anony-

mous behavior sequence 𝑆 = {𝑣𝑠
1
, 𝑣𝑠

2
, ..., 𝑣𝑠

𝑙
} in the chronological

order where 𝑙 is the length of session 𝑆 . Sequential neural networks,

such as RNN [7], transformers [31], are employed to capture user

dynamic preferences within sessions. Further item sequences can

be organized as session graphs G𝑠 = (V𝑠 , E𝑠 ) that model com-

plex pair-wise interactions of adjacent items using graph neural

network. The relation of edge (𝑣𝑖 , 𝑣 𝑗 ) can be defined by the inter-

action direction, i.e., in-edge or out-edge [39]. Both sequential or

graph-based methods only learn item embeddings for 𝑣𝑖 but ignore

side information of products, like product titles, product attributes,

and interaction patterns. Among them, search queries associated

with clicked/purchased behaviors are helpful to better capture user

intentions and evolving preference changes. Hence we improve

session-based recommendation by auxiliary user search keyword

sequences 𝐾 = {𝑘𝑠
1
, 𝑘𝑠

2
, ..., 𝑘𝑠

𝑙
} and our generated knowledge for

each search-product pair (𝑣𝑠
𝑖
, 𝑘𝑠

𝑖
).

4.2.1 Experimental Setup. We collect and filter one-week session

data from our log system that falls into the categoires of clothing
and electronics. Each session is limited within 20 minutes, which

contains highly-frequent items in the same domain and ends with

successful purchases. For training/test splitting, sessions in the

first five days are used as training, while the sixth and the last

https://huggingface.co/microsoft/deberta-v3-large
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Table 7: Statistics of Session-based recommendation datasets
of two categories. “Avg. Sess. L.” stands for average session
length. “Avg. Q. L.” is the average query length. “Avg Uniq. Q.
L.” stands for average unique query length.

clothing electronics
Train Dev Test Train Dev Test

# Sessions 1.32M 0.24M 0.23M 3.13M 0.59M 0.58M

Avg. Sess. L. 8.79 8.78 8.70 12.27 12.17 12.22

Avg. Q. L. 8.32 8.29 8.22 11.68 11.61 11.61

Avg Uniq. Q. L. 1.36 1.37 1.36 2.47 2.48 2.48

day are employed as validation and test data. Dataset statistics are

detailed in Table 7. Sessions of the electronics domain have longer

unique query sequences than clothing. It indicates that users might

revise their original search keywords and modeling dynamics of

user query can help precisely predict user behaviors. We formulate

session-based recommendations as a ranking problem as previous

work [36] and employ the commonly-used metrics in our experi-

ments, i.e., Hits@10, NDCG@10, and MRR@10,

4.2.2 Baselines. We compare with competitive sequential models

and graph-based models as baselines:

• FPMC [23] formulates the representation of session via Markov-

chain based methods.

• GRU4Rec [7] leverages Gated Recurrent Unit (GRU) to simulate

the Markov Decision Process but has a better generalization.

• STAMP [12] applies attention on the last item and previous

histories to represent users’ short-term interests.

• CSRM [35] combines an inner memory encoder and external

memory to capture session correlations.

• SR-GNN [43] is the first to apply graph neural network (GNN) to

the SBR task, which transforms the session sequence into a direct

unweighted graph to learn item and transition representations.

• GC-SAN [44] extends SR-GNN by self-attention over the whole

graph after graph convolution to obtain the global representation.

• GCE-GNN [39] aggregates two levels of item embeddings from

session graphs and global graphs with soft attention.

4.2.3 COSMO-GNN. Preliminary experiments demonstrate that

GCE-GNN can achieve strong performance on various session-based

recommendation datasets and learn better item embeddings with

two-level GNNs. Therefore, we extend GCE-GNNwith search query

related knowledge generated from COSMO-LM, and jointly opti-

mize GNN for search intention-aware recommendation. We name

our propose approach as COSMO-GNN. Formally for the time step 𝑡

in the session 𝑆 , the user searches the query 𝑘𝑠𝑡 and have interaction

with the item 𝑣𝑠𝑡 . The item embedding obtained from GCE-GNN

is denoted as h𝑠𝑡 . Then COSMO-LM is used to generate intention

knowledge explaining the behavior with query-product pair (𝑣𝑠𝑡 , 𝑘𝑠𝑡 ).
We leverage the same LM to vectorize generated knowledge and

obtain session knowledge embedding g𝑠𝑡 . To align the knowledge

space with GNN feature space, a two-layer perceptron is used to

transform knowledge representation g𝑠𝑡 to ĝ𝑠𝑡 . The final represen-
tation for each step is the concatenation of GNN item embedding

Table 8: Experimental Results of Session-based Recommen-
dations.

Method

clothing electronics
Hits@10 NDCG@10 MRR@10 Hits@10 NDCG@10 MRR@10

FPMC 62.16 45.07 39.60 21.79 16.01 14.18

GRU4Rec 83.20 63.37 56.94 49.53 33.99 29.06

STAMP 81.34 61.32 54.86 56.96 38.74 32.92

CSRM 82.31 65.59 60.25 61.66 46.63 41.83

SRGNN 85.82 69.68 64.45 67.83 55.23 51.22

GC-SAN 84.43 68.96 63.93 66.88 55.87 52.34
GCE-GNN 86.67 69.35 63.79 70.13 55.17 50.37

COSMO-GNN 90.18 72.30 67.08 74.21 56.26 50.67

Δ 4.05% 3.76% 4.08% 5.82% 0.70% -3.19%

and knowledge embedding, i.e., [h𝑠𝑡 , ĝ𝑠𝑡 ]. Following [39], the session
representation can be obtained via average polling over all steps’

representations.

4.2.4 Results. Experimental results are shown in Table 8. We can

observe: 1). Our proposed COSMO-GNN significantly outperforms

all the competitive baselines on Hits@10 and NDCG@10 for two do-

mains, and compete almost all baselines with MRR@10. 2). COSMO-

GNN achieves slightlymore improvement (5.82% v.s. 4.05%Hits@10)

on the session data that has more complex and diverse search se-

quences. As shown in Table 7, more unique search queries are

involved in the session of electronics than clothing (2.47 v.s. 1.36).

The reason might be that user intentions for clothing are much

easier to describe, but it requires more background knowledge for

revisions to reach what users really need. More investigations like

how COSMO reduces query rewrites are left for future work.

4.3 Search Navigation
Besides aforementioned traditional e-commerce scenarios, COSMO

can also revolutionizes search navigation, moving away from tra-

ditional product-centric taxonomies towards a customer-focused

approach. This shift enhances the shopping experience, aligning

it more closely with customer intents and behaviors, and bridging

the gap between product classification and customer language by

dynamically providing taxonomy with customer query concepts.

Specifically COSMO intention knowledge can be further organized

into hierarchies shown in Figure 8 that expand coarse-grained ones

(camping) to fine-grained ones (winter camping), and intention con-

cepts are further linked to product concepts such as winter boots.

4.3.1 Multi-Turn Navigation. COSMO distinguishes itself with a

multi-layered and dynamic navigation system (Figure 9):

(1) Broad Conception Interpretation: It begins by tackling

broad queries using advanced analytics and customer behav-

ior insights, covering a wide range of user intents without

explicit domain knowledge.

(2) Product Type and SubtypeDiscovery: Subsequently, COSMO

assists users in identifying specific product types and sub-

types, adept at handling both direct and abstract product

queries.
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Figure 8: An illustration of hierarchical organization of
COSMO tail knowledge.

Figure 9: Search Navigation Experience using COSMO

(3) Attribute-Based Refinement: The final layer aids in fine-

tuning search results, allowing users to filter based on spe-

cific attributes and aligning results with individual prefer-

ences.

Central to COSMO’s functionality is the Multi-Turn Navigation.
Here, COSMO excels in providing multiple rounds of search refine-

ments through continuous recommendations. For example, a search

for ’camping’ might lead to a selection like ’air mattress’, which

then refines to ’camping air mattress’. COSMO would then offer

various types of camping air mattresses tailored to different needs

such as lakeside camping, mountain camping, or 4-person camping.
This multi-turn navigation allows for deeper and more precise re-

finements, mirroring a natural discovery process and significantly

enhancing the user’s search experience.

4.3.2 Online Experiments. The integration of COSMO into our

online search navigation system has led to significant business im-

provements, underscoring the power and potential of COSMO-LM

based applications. This conclusion is drawn from meticulously

conducted Amazon online A/B tests carried out over several months

in total, targeting approximately 10% of Amazon’s U.S. traffic. These

well-structured tests revealed a notable 0.7% relative increase in

Figure 10: An example of generation from COSMO-LM

product sales within this segment, translating to hundreds of mil-

lion dollars in annual revenue surge. Additionally, an 8% increase in

navigation engagement rate was observed within the same traffic

segment, highlighting improved customer interaction and satisfac-

tion. These outcomes are especially significant considering they

were derived from the implementation of a single, relatively minor

feature on the search page with limited showroom visibility, as

illustrated in Figure 9. The success of this initial implementation

indicates a tremendous opportunity: by extending the adaptation of

COSMO-LM to encompass all traffic for navigation, we anticipate

the potential to generate a revenue increase in the billions. More-

over, this promising outcome also underscores the vast potential of

leveraging the COSMO-LM across a variety of other features and

applications, opening new avenues for enhanced user experience

and business growth.

5 CONCLUSION AND DISCUSSION
In this paper, we propose finetuning language models on a col-

lection of e-commerce annotated data, phrased as instructions, to

generate high-quality commonsense knowledge that aligns with

human preferences. To gather large-scale and diverse instruction

data, we design an automatic instruction generation pipeline based

on massive user behaviors. Scaling up product domains, relation

types, and finetuned tasks achieves scalable knowledge extraction.

Furthermore, downstream applications, such as semantic relevance

and session-based recommendation, demonstrate the effectiveness

of knowledge generated from instruction-finetuned language mod-

els. Compared to directly distilling knowledge from large language

models, the instruction-finetuned models, with fewer parameters,

offer significant advantages in terms of model inference efficiency.

Our work represents the first step in aligning language models

with domain-specific human preferences, and we hope that the

automatic instruction data pipeline can be applied to other fields.
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A KNOWLEDGE GENERATION
We present generation examples for each category in Table 9.

Table 9: Examples of Generations for Different Categories.

Category Example

Clothing, Shoes & Jewelry used for biking

Sports & Outdoors capable of providing arch support

Home & Kitchen used for peeling potatoes

Patio, Lawn & Garden capable of hanging out in the backyard

Tools & Home Improvement used for sharpening scissors

Musical Instruments used for wedding party

Industrial & Scientific capable of holding a lot of weight

Automotive capable of digging a hole.

Electronics used to prevent blisters

Baby Products capable of keeping the baby’s feet dry

Arts, Crafts & Sewing used for stamping on fabric

Health & Household capable of hydrating the skin

Toys & Games capable of flying in the air

Video Games used to protect the headset

Grocery & Gourmet Food used to make potato chips

Office Products used for writing down important information

Pet Supplies used for walking the dog

Others capable of tracking calories burned

B KNOWLEDGE ANNOTATION
The instructions of data annotation is summarized into five as-

cpects:

• Completeness: the explanation must be a complete, meaningful

sentence.

• Relevance: the explanation should be relevant — i.e., very closely

connected in meaning — to the products it refers to.

• Informativeness: remember that each explanation describes the

shopping behavior of a customer, and in so doing, it should also

specify what the user may be looking for in terms of a product’s

functional requirements.

• Plausibility: the explanation should describe the user’s shopping
behavior in a way that is accurate, reasonable and appropriate in

the particular context determined by the query.

• Typicality: although wemay have equally valid inferences about

a customer’s shopping intention, those statements can be ranked

differently with regard to how representative they are of typical

user shopping behavior given what is known about the queried

product.
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